Quantifying cell-to-cell variation in power-law rheology.
نویسندگان
چکیده
Among individual cells of the same source and type, the complex shear modulus G(∗) exhibits a large log-normal distribution that is the result of spatial, temporal, and intrinsic variations. Such large distributions complicate the statistical evaluation of pharmacological treatments and the comparison of different cell states. However, little is known about the characteristic features of cell-to-cell variation. In this study, we investigated how this variation depends on the spatial location within the cell and on the actin filament cytoskeleton, the organization of which strongly influences cell mechanics. By mechanically probing fibroblasts arranged on a microarray, via atomic force microscopy, we observed that the standard deviation σ of G(∗) was significantly reduced among cells in which actin filaments were depolymerized. The parameter σ also exhibited a subcellular spatial dependence. Based on our findings regarding the frequency dependence of σ of the storage modulus G('), we proposed two types of cell-to-cell variation in G(') that arise from the purely elastic and the frequency-dependent components in terms of the soft glassy rheology model of cell deformability. We concluded that the latter inherent cell-to-cell variation can be reduced greatly by disrupting actin networks, by probing at locations within the cell nucleus boundaries distant from the cell center, and by measuring at high loading frequencies.
منابع مشابه
On the origin and extent of mechanical variation among cells
Investigations of natural variation in cell mechanics within a cell population are essential to understand the stochastic nature of soft-network deformation. Striking commonalities have been found concerning the average values and distribution of rheological parameters of cells: first, attached and suspended cells exhibit power-law rheological behavior; second, cell stiffness is distributed log...
متن کاملA computational study on power-law rheology of soft glassy materials with application to cell mechanics
Response of the cytoskeleton to mechanical stimulus, which involves coordinated assembly and disassembly of cytoskeletal polymers and their coupling to motor proteins, has been shown to be governed by a ubiquitous mechanical behavior called power-law rheology. Various experimental techniques in cell mechanics have yielded similar qualitative observations and quantitative behavior indicating tha...
متن کاملPerformance assessment of a hybrid fuel cell and micro gas turbine power system
In this paper, a hybrid solid oxide fuel cell (SOFC) and micro gas turbine (MGT) power system is parametrically studied to evaluate the effect of different operating conditions. The SOFC/MGT power system includes SOFC reactor, combustion chamber, compressor and turbine units, and two heat exchangers. The effects of fuel utilization, temperature, and pressure are assessed on performance of t...
متن کاملEagle Strategy Based Maximum Power Point Tracker for Fuel Cell System
A bunch of factors including the limited fossil resources and rising of fossil fuel price have been causes moving to create the new structure that is based on providing energy security, and protect the environment. One of the alternatives is the fuel cell (FC). Maximum power point tracker has an important role to increase the efficiency of the FC systems. One of the difficulties in maximum powe...
متن کاملMicroconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
We describe a method for quantifying the mechanical properties of cells in suspension with a microfluidic device consisting of a parallel array of micron-sized constrictions. Using a high-speed charge-coupled device camera, we measure the flow speed, cell deformation, and entry time into the constrictions of several hundred cells per minute during their passage through the device. From the flow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 105 5 شماره
صفحات -
تاریخ انتشار 2013